| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. | (a) $\begin{equation*} (y=) 5-2 \times 3=-1 \tag{1} \end{equation*}$ <br> (b) Gradient of perpendicular line is $\frac{1}{2}$ $y-(-1)=\frac{1}{2}(x-3) \quad \text { ft their } m \neq-2$ <br> ( or substituting $(3,-1)$ into $y=($ their $m) x+c$ ) $x-2 y-5=0$ | B1 <br> M1 A1ft <br> A1 <br> (4) <br> Total 5 marks |
| 2. | (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x+18 x^{-4} \quad x^{n} \mapsto x^{n-1}$ <br> (b) $\begin{aligned} & \int\left(2 x^{2}-6 x^{-3}\right) \mathrm{d} x=\frac{2}{3} x^{3}+3 x^{-2} \quad x^{n} \mapsto x^{n+1} \\ & \begin{aligned} {[\cdots]_{1}^{3} } & =\frac{2}{3} \times 3^{3}+\frac{3}{9}-\left(\frac{2}{3}+3\right) \\ = & 14 \frac{2}{3} \end{aligned} \quad \frac{44}{3}, \frac{132}{9} \text { or equivalent } \end{aligned}$ | M1 A1 (2) M1 A1 M1 A1 (4) Total 6 marks |
| 3. | (a) $\begin{array}{rlr} \tan \theta & =\frac{3}{2} \quad \text { Use of } \tan \theta=\frac{\sin \theta}{\cos \theta} \\ \theta & =56.3^{\circ} & \text { cao } \\ & =236.3^{\circ} \quad \text { ft } 180^{\circ}+\text { their principle value } \end{array}$ <br> Maximum of one mark is lost if answers not to 1 decimal place <br> (b) $\begin{aligned} & 2-\cos \theta=2\left(1-\cos ^{2} \theta\right) \quad \text { Use of } \sin ^{2} \theta+\cos ^{2} \theta=1 \\ & 2 \cos ^{2} \theta-\cos \theta=0 \end{aligned}$ <br> Allow this A1 if both $\cos \theta=0$ and $\cos \theta=\frac{1}{2}$ are given $\begin{array}{lll} \cos \theta=0 \Rightarrow \theta=90^{\circ}, 270^{\circ} & \text { M1 one solution } \\ \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}, 300^{\circ} & \text { M1 one solution } \end{array}$ | M1 <br> A1 <br> A1 ft <br> (3) <br> M1 <br> A1 <br> M1 A1 <br> M1 A1 (6) <br> Total 9 marks |




| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6. | (a) $\begin{gathered} x^{2}+2 x+3=(x+1)^{2}+2 \\ a=1, b=2 \end{gathered}$ | B1, B1 (2) |
|  | (b) <br> $U$ shape anywhere minimum ft their $a$ and positive $b$ $(0,3)$ marked | M1 <br> A1ft <br> B1 <br> (3) |
|  | (c) $\Delta=b^{2}-4 a c=2^{2}-4 \times 3=-8$ | B1 |
|  | The negative sign implies there are no real roots and, hence, the curve in (b) does not intersect (meet, cut, ...) the $x$-axis. Accept equivalent statements and the statement that the whole curve is above the $x$-axis. | B1 <br> (2) |
|  | (d) $\Delta=k^{2}-12$ | M1 |
|  | $\Delta<0 \Rightarrow k^{2}-12<0 \quad\left(\text { or } k^{2}<12\right)$ | A1 |
|  | $\begin{equation*} -2 \sqrt{ } 3<k<2 \sqrt{ } 3 \tag{4} \end{equation*}$ <br> Allow $\sqrt{ } 12$ <br> If just $k<2 \sqrt{ } 3$ allow M1 A0 | M1 A1 |
|  | Alternative to (d) | Total 11 marks |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 2 x+k=0 \Rightarrow x=-\frac{k}{2}$ |  |
|  | Minimum greater than 0 implies $\frac{k^{2}}{4}-\frac{k^{2}}{2}+3>0$ | M1 |
|  | $k^{2}<12$ | A1 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. | (a) $x$-coordinate of $P$ is $-2, x$-coordinate of $Q$ is 2 . <br> (b) $\begin{aligned} y & =x^{3}-x^{2}-4 x+4 \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =3 x^{2}-2 x-4 * \end{aligned}$ <br> Multiplying out <br> Alternatively <br> Using product rule $\frac{\mathrm{d} y}{\mathrm{~d} x}=1\left(x^{2}-4\right)+(x-1) 2 x$ $=3 x^{2}-2 x-4$ <br> (c) $x=-1 \Rightarrow m=3+2-4=1 \quad$ Substituting $x=-1$ into (b) $\begin{equation*} y-6=1(x-(-1)) \Rightarrow y=x+7 \tag{cso} \end{equation*}$ <br> (d) $\begin{array}{cc} x^{3}-x^{2}-4 x+4=x+7 & \text { line }=\text { curve } \\ x^{3}-x^{2}-5 x-3=0 & \\ (x+1)\left(x^{2}-2 x-3\right)=0 & \text { Obtaining linear } \times \text { quadratic } \\ (x+1)(x+1)(x-3)=0 & \text { Obtaining } 3 \text { linear factors } \\ R:(3,10) & \end{array}$ <br> In (d) if the correct cubic is obtained the factors can just be written down by inspection. <br> Parts (c) and (d) can be done together. <br> On obtaining $(x+1)^{2}(x-3)$, the repeated root shows that $y=x+7$ is a tangent to the curve at $(-1,6)$ and, if this is stated, the M1 A1 for (c) should be given at this point. | $\mathrm{B} 1, \mathrm{~B} 1$ $(2)$ <br> M 1  <br> M 1 A 1 $(3)$ <br>   <br> M1  <br> M1 A1  <br> M1  <br> A1  <br> M1  <br> M1  <br> M1  <br> A1, A1  <br> Total 12 marks  |



